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Introduction
• Probabilistic path planners are generally very efficient
 PRM, RRT and variants
 “Sample-Checking-Resample” procedure
 Advantageous in high dimensional problems
 Probabilistic complete

• Prohibitively expensive in a “Narrow Passage” problem
 Hard to sample a collision-free path through a narrow corridor

• Can we reduce collision detection computation?
 Combinatorial methods help
 Works well for narrow passage problems

• Ellipsoidal robot
 Simple and clean characterization
 Closed-form Minkowski sum and difference
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Mathematical Preliminary
• The closed-form Minkowski operations between an ellipsoid and any convex 

differentiable surface in ℝ𝑛𝑛
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Affine transform 
into “shrunk space”
𝑇𝑇 = 𝑅𝑅2Λ(𝒂𝒂2/𝑟𝑟)𝑅𝑅2𝑇𝑇

𝒙𝒙′ = 𝑇𝑇𝒙𝒙

Shrinking to sphere

Offset radius 𝑟𝑟 along 
outward normal

𝒏𝒏 =
∇Φ(𝒙𝒙′)
∇Φ(𝒙𝒙′)

𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜′ = 𝒙𝒙′ ± 𝑟𝑟𝒏𝒏

Offset touching surface

Preserves 
convexity

𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇−1𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜′

Stretching back

Implicit: Φ(𝒙𝒙) = 1
Parametric: 𝒙𝒙 = 𝒇𝒇(𝝋𝝋)

Original surface



Highway RoadMap Planner Overview
• Constructions of C-layers: rotation discretization

• At each C-layer:
 C-obstacle boundary computations: Closed-form Minkowski operations
 Collision free subgraphs: Sweep line approach for cell decomposition

• Vertex connections between adjacent C-layers
 Local C-space idea: the Kinematics of Containment for ellipsoids

• Graph search for a valid path
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Cell Decomposition at each C-layer
• Sweep-Line process for detecting 

collision-free subspace
 Each line: 𝑃𝑃𝐶𝐶𝐶𝐶 = ⋂𝑖𝑖=1

𝑛𝑛×𝑛𝑛𝐴𝐴 𝑃𝑃𝐴𝐴𝐴𝐴 − ⋃𝑗𝑗=1
𝑛𝑛×𝑛𝑛𝑂𝑂 𝑃𝑃𝑂𝑂𝑂𝑂
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𝑃𝑃𝐴𝐴

𝑃𝑃𝑂𝑂
𝑃𝑃𝐶𝐶𝐶𝐶

• Subgraph at each C-layer
 Middle point on 𝑃𝑃𝐶𝐶𝐶𝐶 as collision-free vertex
 Vertex connections within one C-layer

𝑷𝑷𝑨𝑨: Arena line segments;
𝑷𝑷𝑶𝑶: Obstacle line segments;
𝑷𝑷𝑪𝑪𝑪𝑪: Collision-free segments;

𝒏𝒏𝑨𝑨: Number of arenas;
𝒏𝒏𝑶𝑶: Number of obstacles;
𝒏𝒏: Number of robot rigid parts



Vertex connections between adjacent C-layers
• Enclose the robot by a slightly larger ellipsoid

• Compute Minkowski Sum/Difference using the larger ellipsoid
 Robot can move inside free of collision
 Description of such motion formulates a “Local C-space” for the vertex
 Convex Lower bound for allowable motion of an ellipsoid contained in another

• New vertex at the intersection between the local c-space of two vertices
 Connect new vertex with the two original vertices respectively

• Avoid traditional collision checking computations
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Local C-space for vertex connections 
between different layers

Layer i+1Layer i

Robot

Illustration of the problem

Robot



Local C-space: the Kinematics of Containment Idea
• Algebraic Condition of Containment for n-dimensional Ellipsoids:
 Exact: 𝑅𝑅𝑎𝑎Λ 𝒂𝒂 𝒖𝒖 + 𝒕𝒕𝑎𝑎 𝑇𝑇Λ−2 𝒃𝒃 𝑅𝑅𝑎𝑎Λ 𝒂𝒂 𝒖𝒖 + 𝒕𝒕𝑎𝑎 ≤ 1
 First-order Approximation (for frustrated motions): 𝑅𝑅𝑎𝑎 ≈ 𝕀𝕀 + �𝜔𝜔𝑎𝑎, 𝝃𝝃 = [𝝎𝝎𝑇𝑇 , 𝒕𝒕𝑇𝑇]𝑇𝑇∈ ℝ𝑛𝑛(𝑛𝑛+1)/2

 Require: 𝐶𝐶𝒖𝒖 𝝃𝝃 = 𝝃𝝃𝑇𝑇𝐻𝐻 𝒖𝒖 𝝃𝝃 + 𝒉𝒉𝑇𝑇 𝒖𝒖 𝝃𝝃 + 𝑐𝑐 𝒖𝒖 ≤ 1 ⇔ max
∀𝒖𝒖𝑖𝑖

𝐶𝐶𝑖𝑖(𝝃𝝃) ≤ 1

• Convexity of the First-order Algebraic Condition of Containment
 Valid configurations stays in the convex hull of some extreme configurations

• Polyhedron C-space as the Convex Lower Bound
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Euclidean space C-space

𝑉𝑉2

𝑉𝑉1

𝑉𝑉1
𝑉𝑉2

Euclidean space C-space



Experiments in 𝑆𝑆𝑆𝑆(2)
• Parameters of Highway RoadMap planner (Superelliptical obstacles)

• Running time comparisons with sample-based planners from OMPL
 Planners: PRM, RRT, RRT-Connect
 Sampling methods: Uniform, Obstacle-based (OB), Bridge test
 Collision detection: GJK method, discrete point set on the boundary
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Map Type # of C-layers # of sweep lines #  of vertices # of edges

Sparse 14 10 493 572

Cluttered 14 25 2009 2547

Maze 55 30 9782 13450

MazeClutteredSparse



Conclusion
• Proposed the closed-form Minkowski sum/difference between an ellipsoid and 

any convex differentiable surface embedded in ℝ𝑛𝑛

• Extended the Highway RoadMap planner
 Superquadrics obstacles
 Novel vertex connection method between adjacent C-layers

• Implemented in C++ and benchmarked with sample-based planners from OMPL
 Compared computational time
 Compared with different sampling methods
 Highway RoadMap performs more efficiently, especially in “narrow passage” problem

• Have potential to build hybrid planners with sample-based methods
 Deal with high-dimensional problems with narrow corridors
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Dirty Laundry
• Geometry for robot and environment
 The curvature constraint for Minkowski difference
 In shrunk space: radius of curvature of 𝑆𝑆1 at every point should be larger than the radius 𝑟𝑟
 How to deal with it in practice: Set environment limit, fill up boundary with obstacles 

 How the shape of ellipsoid affects the performance? The impact of inflation?
 Both will affect the volume of Local C-space, therefore the computations of middle vertex
 Related to rotation resolution: C-layer distance smaller than largest rotational angle along 

each rotational axis

• Implementation and experiment details
 Values of the discretization, i.e. number of C-layers and sweep lines
 Comparisons for different sampling methods

• Work in progress: Implementations of the challenging 𝑆𝑆𝑆𝑆(3) case
 Rotation discretization: uniform random, uniform grid on 𝑆𝑆𝑆𝑆(3)
 Local C-space: 6D convex polyhedron W
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