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Motivations

e A “pick-and-place” task made by a robot
manipulator with uncertainties at the end
effector

e Check if the whole error space is fully contained
in the target: containment checking

e Compute how much error the end effector can
tolerate in a successful assembly trial: volume
of motions in Configuration space
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Mathematical Preliminary

e Expressions of ellipsoid:
e Implicit: (x —t)TA(x—t) =1, A = RA"?(a)R!
e ReESO(n),te R
e Explicit: x = RA(a)u +t
e A:the smaller moving ellipsoid; B: the larger fixed ellipsoid
* Configurations:
e Pose Change Group (PCG): (R,t) € PCG(n) = SO(n) x R"

» Configurations as elements in the Lie Algebra: £ = [w”,tT]Te R*"+1)/2
° W = lOgV(R) € Rn(n—l)/Z



Convex Lower Bound based on the First-order
Algebraic Condition of Containment

* Algebraic Condition of Containment:
e Exact: (R,A@u +t)'A2(b)(R,A@u+t,) <1
e First-order Approximation:
* G® =FHWE+h (WE+c(u) ) max(;(§) <1

e Small angle assumption: R, = exp(®,) = I + @&,



Convex Lower Bound based on the First-order
Algebraic Condition of Containment

e Convexity of the First-order Algebraic Condition of Containment

* Ci(a§ + (1 — a)&,) — [aCi(§) + (1 — a)(;(§,)]
=—a(l-a)[& — &) Hu)E —&)] <0,Va € [0,1]
e H(u;) is symmetric positive-definite

 Maximization preserves convexity

e Polyhedron C-space as the Convex Lower Bound

 Valid configurations stays in the convex hull of some extreme
configurations

e Vertex Selections:
e Maximum distance on each axis of the C-space
e Maximum distance to the origin, maximum magnitude
e Random configurations



Geometric Lower Bound based on the Closed-form
Minkowski Difference

e Closed-form Minkowski difference between ellipsoids
e Applied at each orientation of ellipsoid A

e Shrink A to a sphere (Affine Transform) -> Offset curve in Shrunk Space ->
Stretching back

Shrunk Space



Geometric Lower Bound based on the Closed-form

Minkowski Difference
* Lower bounds of Minkowski
difference boundary in Shrunk Space R
e Extreme distance at each axis of
Ellipsoid that the Sphere can reach (N-
dim) ponl I D N N AN SN N R
e Construct polyhedron at each oap T mw

orientation 03l — — —Fitied polyhedron
e Affine transform preserves convexity

e Geometric Lower Bound

e union of the polyhedron at each
orientation
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Containment Checking Process

e Point-in-polyhedron checking:
e Decompose into disjoint simplexes by triangulation

* For each simplex, query the configuration as a convex combination
of the vertices of the simplex

. (}1)) = (Pi”“o Pil Pin) (Ao Ay . AT, A; € [0,1] (Vi)
e P:the point to be queried

* Pg.:i-th vertex that defines the simplex

* For Convex Lower Bound: directly apply “point-in-
polyhedron” test

* For Geometric Lower Bound: with the knowledge of
orientation, apply the test at the specific orientation



Volume of the Lower Bounds

* \Volume of polyhedron
e Triangulation -> disjoint simplexes
e VVolume: Vpoly(P) — ?;1 Vsimplex(PSOJPSy ...,PSn)
e P:the point to be queried
* Pg:i-th vertex that defines the simplex

 m: number of disjoint simplex
* n:dimension of the space

* Vimpiex = || det(Ps, = Ps,, Ps, — Ps,, ..., Ps, = Ps,)
* For Convex Lower Bound: directly compute the volume of polyhedron
* For Geometric Lower Bound: integral of volume at each orientation
* Viotar = fR Vgeo(R)dR

* Vyeo (R): volume of the geometric lower bound at each orientation
* dR: Haar measure for integration on SO(n)




e Containment checking validation

e Volume comparisons
 inflation factor ¢

e b=_0+¢8a
* aspect ratio

e a=a,/a,
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2D Validation

e Shape of the lower bounds

Volume

Minkowski Difference

————— Convex Lower Bound
— — —Geometric Lower Bound

Convex
Lower Bound

Geometric
Lower Bound

Relative Volume

C-space

Volume

Minkowski Difference
— Corvex Lower Bound
— — —Geometric Lower Bound

e
©
@

Relative Volume

o o
o 5 2 9w e
~ w o (4] w

=
@
o

Relative Volume

06

! 0.5
0.95 Minkowski Difference 0.45
_____ Convex Lower Bound
— — —Geometric Lower Bound 04
09
g
Eoss
©
>
2
] 0.8
o
@
075
07 prmmmimim
0

L
1.1 1.15

0.06 0.07 0.08
Inflation Factor

8/29/2018

0.07 0.08 0.09 0.1

Inflation factor ifiation Factor

ASME IDETC 2018

L
1.2

1.25 1.3
Aspect Ratio

L
1.35

" Aspect Ratio

Minkowski Difierence
————— Convex Lower Bound
— — — Geometric Lower Bound

1.25 13 1.35 1.4 1.45
Aspect Ratio



3D Validation

e Volume comparisons
e |Inflation factor ¢

* Aspect ratio a,, a,
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e b=(1+¢a

s a;=a,/a,
* a, = a,/a,
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Potential Applications

e Assembly task (KUKA LWR robot)
1 O 0]0.5
e Targetpose: (R|[t) =0 —-1 0| O
0 0 -110.15
* Joint space:

« [-0.7768,0.1991,—0.1991, 1.6981, —1.6241, 1.9656, —0.9147]"
e Shape of an object: Ellipsoid with semi-axis length ..
a, =[0.2,0.15,0.1] T 0.25 .| 50 Random Ending Poses AR I -
e Decide how large space the end effector can move °2-
e inflated by e = 0.1 e

e Geometric Lower Bound Volume: V; ¢4 = 5.2385 X 1078 o'+
* error tolerance of each joint O
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Conclusions

 Two main goals: Containment checking and volume of the allowable
motions in C-space

* Convex Lower Bound: a convex polyhedron subspace in
Configuration space based on Algebraic Condition of Containment

 Geometric Lower Bound: a union of polyhedron subspace based on
the Minkowski difference between two ellipsoids

 Validated the theory by 2D and 3D examples
e Discussed potential applications
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