

ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference 42nd Mechanisms and Robotics Conference (MR)

> Quebec City, Quebec, Canada August 29, 2018

Lower Bounds of the Allowable Motions of One *N*-dimensional Ellipsoid Contained in Another

Sipu Ruan¹, Jianzhong Ding², Gregory S. Chirikjian¹

¹ Dept. of Mechanical Engineering, The Johns Hopkins University

² Dept. of Mechanical Engineering, Beihang University

Content

- Motivations and mathematical preliminary
- Algebraic Condition of Containment and Convex Lower Bound
- Minkowski Difference and Geometric Lower Bound
- Examples and comparisons for the proposed lower bounds in 2D/3D
- Potential applications

Motivations

- A "pick-and-place" task made by a robot manipulator with uncertainties at the end effector
 - Check if the whole error space is fully contained in the target: *containment checking*
 - Compute how much error the end effector can tolerate in a successful assembly trial: *volume of motions in Configuration space*

Mathematical Preliminary

- Expressions of ellipsoid:
 - Implicit: $(\mathbf{x} \mathbf{t})^T A(\mathbf{x} \mathbf{t}) = 1, A = R\Lambda^{-2}(\mathbf{a})R^T$
 - $R \in SO(n), \mathbf{t} \in \mathbb{R}^n$
 - Explicit: $\mathbf{x} = R\Lambda(\mathbf{a})\mathbf{u} + \mathbf{t}$
 - A: the smaller moving ellipsoid; B: the larger fixed ellipsoid
- Configurations:
 - Pose Change Group (PCG): $(R, \mathbf{t}) \in PCG(n) \doteq SO(n) \times \mathbb{R}^n$
 - Configurations as elements in the Lie Algebra: $\boldsymbol{\xi} = [\boldsymbol{\omega}^T, \mathbf{t}^T]^T \in \mathbb{R}^{n(n+1)/2}$
 - $\boldsymbol{\omega} = \log^{\vee}(R) \in \mathbb{R}^{n(n-1)/2}$

Convex Lower Bound based on the First-order Algebraic Condition of Containment

- Algebraic Condition of Containment:
 - Exact: $(R_a \Lambda(\mathbf{a})\mathbf{u} + \boldsymbol{t}_a)^T \Lambda^{-2}(\boldsymbol{b})(R_a \Lambda(\mathbf{a})\mathbf{u} + \boldsymbol{t}_a) \leq 1$
 - First-order Approximation:

•
$$C_{\mathbf{u}}(\boldsymbol{\xi}) = \boldsymbol{\xi}^T H(\mathbf{u})\boldsymbol{\xi} + \mathbf{h}^T(\mathbf{u})\boldsymbol{\xi} + c(\mathbf{u}) \quad \longleftrightarrow \quad \max_{\forall \mathbf{u}_i} C_i(\boldsymbol{\xi}) \le 1$$

• Small angle assumption: $R_a = \exp(\widehat{\omega}_a) \approx \mathbb{I} + \widehat{\omega}_a$

Convex Lower Bound based on the First-order Algebraic Condition of Containment

- Convexity of the First-order Algebraic Condition of Containment
 - $C_i(\alpha \xi_1 + (1 \alpha)\xi_2) [\alpha C_i(\xi_1) + (1 \alpha)C_i(\xi_2)]$ = $-\alpha (1 - \alpha)[(\xi_1 - \xi_2)^T H(\mathbf{u}_i)(\xi_1 - \xi_2)] < 0, \forall \alpha \in [0, 1]$
 - $H(\mathbf{u}_i)$ is symmetric positive-definite
 - Maximization preserves convexity
- Polyhedron C-space as the Convex Lower Bound
 - Valid configurations stays in the convex hull of some extreme configurations
 - Vertex Selections:
 - Maximum distance on each axis of the C-space
 - Maximum distance to the origin, maximum magnitude
 - Random configurations

Geometric Lower Bound based on the Closed-form Minkowski Difference

- Closed-form Minkowski difference between ellipsoids
 - Applied at each orientation of ellipsoid A
 - Shrink A to a sphere (Affine Transform) -> Offset curve in Shrunk Space -> Stretching back

7

Geometric Lower Bound based on the Closed-form Minkowski Difference

ASME IDETC 2018

- Lower bounds of Minkowski difference boundary in Shrunk Space
 - Extreme distance at each axis of Ellipsoid that the Sphere can reach (Ndim)
 - Construct polyhedron at each orientation
 - Affine transform preserves convexity
- Geometric Lower Bound
 - union of the polyhedron at each orientation

8

Containment Checking Process

- Point-in-polyhedron checking:
 - Decompose into disjoint simplexes by triangulation
 - For each simplex, query the configuration as a convex combination of the vertices of the simplex

•
$$\binom{P}{1} = \binom{P_{S_0} P_{S_1}}{1 \quad 1} \dots \quad \binom{P_{S_n}}{1} (\lambda_0 \lambda_1 \dots \lambda_n)^T, \lambda_i \in [0,1] (\forall i)$$

- P: the point to be queried
- P_{S_i} : *i*-th vertex that defines the simplex
- For Convex Lower Bound: directly apply "point-inpolyhedron" test
- For Geometric Lower Bound: with the knowledge of orientation, apply the test at the specific orientation

Volume of the Lower Bounds

- Volume of polyhedron
 - Triangulation -> disjoint simplexes
 - Volume: $V_{poly}(P) = \sum_{i=1}^{m} V_{simplex}(P_{S_0}, P_{S_1}, ..., P_{S_n})$
 - *P*: the point to be queried
 - P_{S_i} : *i*-th vertex that defines the simplex
 - *m*: number of disjoint simplex
 - *n*: dimension of the space

•
$$V_{simplex} = \left\| \frac{1}{n!} \det(P_{S_1} - P_{S_0}, P_{S_2} - P_{S_0}, \dots, P_{S_n} - P_{S_0}) \right\|$$

- For Convex Lower Bound: directly compute the volume of polyhedron
- For Geometric Lower Bound: integral of volume at each orientation
 - $V_{total} = \int_{R} V_{geo}(R) dR$
 - $V_{geo}(R)$: volume of the geometric lower bound at each orientation
 - dR: Haar measure for integration on SO(n)

2D Validation

- Shape of the lower bounds
- Containment checking validation

\o|r

le

- Volume comparisons
 - inflation factor ε
 - **b** $= (1 + \varepsilon)$ **a**
 - aspect ratio α

Volume

Minkowski Difference

Convex Lower Bound

Geometric Lower Bound

0.18

0.16

0.14

0.12

0.1 Aolume 0.08

0.06

0.04

0.0

0.05

• $\alpha = a_1/a_2$

0.08

0.07

8/29/2018

Inflation Factor

3D Validation

- Volume comparisons
 - Inflation factor ε
 - $\boldsymbol{b} = (1 + \varepsilon)\boldsymbol{a}$
 - Aspect ratio α_1 , α_2
 - $\alpha_1 = a_1/a_2$
 - $\alpha_2 = a_1/a_3$

Potential Applications

• Assembly task (KUKA LWR robot)

• Target pose:
$$(R|\mathbf{t}) = \begin{pmatrix} 1 & 0 & 0 & 0.5 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0.15 \end{pmatrix}$$

• Joint space:

• $[-0.7768, 0.1991, -0.1991, 1.6981, -1.6241, 1.9656, -0.9147]^T$

- Shape of an object: Ellipsoid with semi-axis length $\mathbf{a}_0 = [0.2, 0.15, 0.1]^T$
- Decide how large space the end effector can move
 - inflated by $\varepsilon = 0.1$
 - Geometric Lower Bound Volume: $V_{total} = 5.2385 \times 10^{-8}$ 0.1
 - error tolerance of each joint

Conclusions

- Two main goals: Containment checking and volume of the allowable motions in C-space
- **Convex Lower Bound**: a convex polyhedron subspace in Configuration space based on Algebraic Condition of Containment
- Geometric Lower Bound: a union of polyhedron subspace based on the Minkowski difference between two ellipsoids
- Validated the theory by 2D and 3D examples
- Discussed potential applications

Acknowledgements

- The authors thank the following people for useful discussions:
 - Dr. Jin Seob Kim, Dr. Arash Ghaani Farashahi, Dr. Shengnan Lu, and Ms. Mengdi Xu
- This work is supported by:
 - National Science Foundation grant IIS-1619050
 - Office of Naval Research Award N00014-17-1-2142

