

ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference 41st Mechanisms and Robotics Conference (MR)

Cleveland, Ohio August 6-9, 2017

Pose Changes from a Different Point of View

Gregory S. Chirikjian

Dept. of Mechanical Engineering Johns Hopkins University

Sipu Ruan

Dept. of Mechanical Engineering Johns Hopkins University

Robert Mahony

College of Engineering and Computer Science The Australian National University

Jochen Trumpf

College of Engineering and Computer Science The Australian National University

Content

- Traditional Point of View
- Concept Definitions
- Conjugations and Change of View
- Screw Parameters
- Introduction to "Pose Change Group" (PCG)
- Applications
- Conclusions

Traditional View

Describe rigid body motions as homogeneous transformations

$$- {}^{A}H_{B}$$
: A --> B as seen in frame A

- ${}^{A}H_{C} = {}^{A}H_{B}{}^{B}H_{C}$: Concatenation of rigid body motions
- ${}^{B}H_{A} = ({}^{A}H_{B})^{-1}$: Inverse transformation
- ${}^{A}x = {}^{A}H_{B}{}^{B}x$: Vector conversion between two coordinate systems

Traditional View

- The group of rigid-body motion, i.e. SE(3)
 - $-(R, \mathbf{t})$: Rotation-translation pair

$$-(R_1,\mathbf{t}_1)\circ(R_2,\mathbf{t}_2)=(R_1R_2,R_1\mathbf{t}_2+\mathbf{t}_1)$$

"Semi-direct" product

$$- (R, \mathbf{t})^{-1} = (R^T, -R^T \mathbf{t})$$

• Group action

$$-(R,\mathbf{t})\cdot \mathbf{x} = R\mathbf{x} + \mathbf{t}$$

 $-[(R_1, \mathbf{t}_1) \circ (R_2, \mathbf{t}_2)] \cdot \mathbf{x} = (R_1, \mathbf{t}_1) \cdot [(R_2, \mathbf{t}_2) \cdot \mathbf{x}]$

 $R \in SO(3), t \in R^3$ " \circ " : Group operator "T" : Matrix transpose "-1" : Group inverse

 $x \in R^{3}$, (*R*, *t*) \in SE(3)

Traditional View

- A natural way for motion descriptions, commonly used for a century in kinematics community
- Hard to model a motion between two poses as seen in a third point of view
 - a humanoid robot seeing his hand moving
 - a ground-based remote control of aerial vehicles

Concept Definitions

- Euclidean Motion
 - Handedness-preserving isometry of Euclidean space
 - Can be described using group-theoretic tools
 - Well-defined without coordinates or frames of reference
- Pose
 - Describes a position and orientation in space
- Change of Pose
 - Conversion of a pose into another
 - A movement of frame without moving the whole space
- Coordinate Transformation
 - Describe changes in the space-fixed frame
 - Describe changes in the way frames are attached to moving body

Conjugation and Change of View

- Problem of interest
 - ${}^{O}_{A}H_{B} = H({}^{O}_{A}R_{B}, {}^{O}_{A}\mathbf{d}_{B})$
 - Note: ${}^{O}_{A}\mathbf{d}_{B}$ is <u>not</u> the translation vector ${}^{O}_{A}\mathbf{t}_{B}$, but the displacement of frame origin O under Euclidean motion ${}^{O}_{A}H_{B}$

Conjugation and Change of View

- Relationship between ${}^{O}_{A}H_{B}$, ${}^{A}_{A}H_{B}$, ${}^{O}_{O}H_{A}$
 - Let x be a point in space, which can be described in any reference frame
 - <u>Coordinate transformation</u> of a point: ${}^{O}X = {}^{O}\mathcal{H}_{A} {}^{A}X$
 - <u>Euclidean motion</u> of the point: ${}^{O}X' = {}^{O}_{A}H_{B} {}^{O}X$

$${}^{A}X' = {}^{A}H_{B} {}^{A}X$$
$${}^{A}X' = {}^{A}\mathcal{H}_{B} {}^{B}X'$$
$${}^{B}X' = {}^{A}X$$
$$\Rightarrow {}^{A}\mathcal{H}_{B} = {}^{A}H_{B}$$

Conjugation and Change of View

- Conjugation: ${}^{O}_{A}H_{B} = {}^{O}\mathcal{H}_{A} {}^{A}_{A}H_{B} {}^{O}\mathcal{H}_{A}^{-1} = {}^{O}_{O}H_{A} {}^{A}_{A}H_{B} {}^{O}_{O}H_{A}^{-1}$
 - Rotation part: ${}^{O}_{A}R_{B} = {}^{O}_{O}R_{A} {}^{A}_{A}R_{B} {}^{O}_{O}R_{A}^{-1}$
 - Translation part: ${}^{O}_{A}\mathbf{d}_{B} = (I {}^{O}_{A}R_{B}) {}^{O}_{O}\mathbf{t}_{A} + {}^{O}_{A}\mathbf{t}_{B} \qquad {}^{O}_{A}\mathbf{t}_{B} = {}^{O}_{O}R_{A} {}^{A}_{A}\mathbf{t}_{B}$
- Transformation of concatenated displacement
 - ${}^{O}_{A}H_{C} = {}^{O}_{B}H_{C} {}^{O}_{A}H_{B}$
 - In contrast with rigid-body kinematics: ${}^{A}_{A}H_{C} = {}^{A}_{A}H_{B} {}^{B}_{B}H_{C}$

Screw Parameters

• Expression of any Euclidean motion:

$$-H(\mathbf{n},\mathbf{p},\theta,d) = \begin{pmatrix} e^{\theta N} & (I-e^{\theta N})\mathbf{p} + d\mathbf{n} \\ \mathbf{0}^T & 1 \end{pmatrix}$$

- n: Direction of screw axis
- N: Skew-symmetric matrix corresponding to \mathbf{n} , $N = \hat{\mathbf{n}}$
 - Can be obtained by: $R R^T = 2 \sin \theta N$
- **p**: Unique vector pointing to the axis, s.t. $\mathbf{p} \cdot \mathbf{n} = 0$
- θ: Angle of rotation

•
$$\theta = \arccos(\frac{trace(R)-1}{2})$$

• *d*: Distance along the axis

•
$$d = \mathbf{d} \cdot \mathbf{n}$$

- $_{A}d_{B} = {}^{O}_{A}\mathbf{d}_{B} \cdot {}^{O}_{A}\mathbf{n}_{B} = {}^{O}_{A}\mathbf{t}_{B} \cdot {}^{O}_{A}\mathbf{n}_{B}$
- Can be obtained by ${}^{O}_{A}H_{B} = H({}^{O}_{A}R_{B}, {}^{O}_{A}\mathbf{d}_{B})$ or $({}^{O}_{A}R_{B}, {}^{O}_{A}\mathbf{t}_{B})$

($_{A}\theta_{B}$, $_{A}d_{B}$) are invariant to the choice of O

Pose Change Group

- Definition of "direct-product" group: $PCG(3) = SO(3) \times \mathbb{R}^3$
 - $({}^{O}_{A}R_{C}, {}^{O}_{A}\mathbf{t}_{C}) = ({}^{O}_{B}R_{C}, {}^{O}_{B}\mathbf{t}_{C}) \cdot ({}^{O}_{A}R_{B}, {}^{O}_{A}\mathbf{t}_{B}) = ({}^{O}_{B}R_{C} {}^{O}_{A}R_{B}, {}^{O}_{B}\mathbf{t}_{C} + {}^{O}_{A}\mathbf{t}_{B})$
 - ${}^{O}_{A}R_{B} = \exp\left({}_{A}\theta_{B} {}^{O}_{A}\widehat{\mathbf{n}}_{B}\right) = {}^{O}_{O}R_{A}{}^{A}_{A}R_{B}{}^{O}_{O}R_{A}^{T}$
 - ${}^{O}_{A}\mathbf{t}_{B}$ is the displacement from A to B as seen in O
- Let *x* denote a point in space
 - ${}^{O}_{A}\mathbf{t}_{X}$: position of \boldsymbol{x} from the origin of A as seen in O
- Group action on pose space: $(Q, \xi) \odot (R, \mathbf{t}) \doteq (QRQ^T, Q\mathbf{t})$

Pose Change Group

- Change of observer frame
 - If the motion is viewed from frame 1 rather than frame O:
 - Transformation: ${}^{1}_{A}H_{B} = {}^{0}_{O}H_{1}^{-1}{}^{0}_{A}H_{B}{}^{0}_{O}H_{1} = {}^{1}_{1}H_{O}{}^{0}_{A}H_{B}{}^{1}_{1}H_{O}^{-1}$
 - Rotational and translational parts can be obtained by group action

$$- \begin{pmatrix} {}^{1}_{A}R_{B}, {}^{1}_{A}\mathbf{t}_{B} \end{pmatrix} = \begin{pmatrix} {}^{1}_{1}R_{O}, \mathbf{0} \end{pmatrix} \odot \begin{pmatrix} {}^{O}_{A}R_{B}, {}^{O}_{A}\mathbf{t}_{B} \end{pmatrix} \\ - {}^{1}_{A}R_{B} = {}^{1}_{1}R_{O} {}^{O}_{A}R_{B} {}^{1}_{1}R_{O}^{T} \\ {}^{1}\mathbf{t} - {}^{1}D {}^{O}\mathbf{t}$$

$$- {}^{1}_{A}\mathbf{t}_{B} = {}^{1}_{1}R_{O} {}^{O}_{A}\mathbf{t}_{B}$$

Pose Change Group

• Change of body-fixed frame

$$- \left({}^{O}_{\bar{A}} R_{\bar{B}}, {}^{O}_{\bar{A}} \mathbf{t}_{\bar{B}} \right) = \left(R_{0}, {}^{O}_{B} \mathbf{t}_{\bar{B}} \right) \cdot \left({}^{O}_{A} R_{B}, {}^{O}_{A} \mathbf{t}_{B} \right) \cdot \left(R_{0}, {}^{O}_{A} \mathbf{t}_{A} \right) {}^{-1}$$

- R_0 is defined by ${}^{O}_{O}H_{\bar{A}}\Delta^{-1} = H(R_0, \mathbf{d}_0)$
- $\Delta \doteq {}^{A}_{A}H_{\bar{A}} = {}^{B}_{B}H_{\bar{B}}$

Conjugation resulting from changing the body-fixed frame

Translational part of the pose changes

Applications

• Bi-invariant Metrics

- Definition: $d(g_1, g_2) = d(h \circ g_1, h \circ g_2) = d(g_1 \circ k, g_2 \circ k)$

- SE(3) does not have nontrivial bi-invariant metric functions
 - $d_{SE(3)}(H_0H_1H_0^{-1}, H_0H_2H_0^{-1}) \neq d_{SE(3)}(H_1, H_2) \neq d_{SE(3)}(H_1H_0, H_2H_0)$
- PCG(3) tolerates bi-invariance under direct-product
 - $d_{PCG(3)}((R_0, \mathbf{t}_0) \cdot (R_1, \mathbf{t}_1), (R_0, \mathbf{t}_0) \cdot (R_2, \mathbf{t}_2)) = d_{PCG(3)}((R_1, \mathbf{t}_1), (R_2, \mathbf{t}_2)) = d_{PCG(3)}((R_1, \mathbf{t}_1) \cdot (R_0, \mathbf{t}_0), (R_2, \mathbf{t}_2) \cdot (R_0, \mathbf{t}_0))$
- Plays a role in interpolating paths between two poses or motions

Applications

- Path Generations
 - $SE(3): H(\tau) = \exp(\tau \log({}^{O}_{A}H_{B})){}^{O}_{O}H_{A}$
 - $\operatorname{PCG}(3): (R(\tau), \mathbf{t}(\tau)) = (\exp\left(\tau \log \begin{pmatrix} 0 \\ A \\ B \end{pmatrix}\right), {}^{O}_{A} \mathbf{t}_{B} \tau) \cdot ({}^{O}_{O} R_{A}, {}^{O}_{O} \mathbf{t}_{A})$

Trajectory starts at ${}^{0}_{O}H_{A}$ at $\tau = 0$, and ends at ${}^{0}_{O}H_{B}$ at $\tau = 1$

Conclusions

- Differences between Pose Changes and Euclidean Motions are reviewed
- An analytical framework for composition of pose changes as a direct product operation is developed
- Applications in bi-invariant metric and path generation are introduced

Acknowledgements

- This work is supported by:
 - Office of Naval Research Award N00014-17-1-2142 (GRANT12203025) under code 311

Thank You !

