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Traditional View
• Describe rigid body motions as homogeneous 

transformations
– 𝐴𝐴𝐻𝐻𝐵𝐵 : A --> B as seen in frame A
– 𝐴𝐴𝐻𝐻𝐶𝐶 = 𝐴𝐴𝐻𝐻𝐵𝐵𝐵𝐵𝐻𝐻𝐶𝐶: Concatenation of rigid body motions
– 𝐵𝐵𝐻𝐻𝐴𝐴 = (𝐴𝐴𝐻𝐻𝐵𝐵)−1 : Inverse transformation
– 𝐴𝐴𝑥𝑥 = 𝐴𝐴𝐻𝐻𝐵𝐵

𝐵𝐵𝑥𝑥 : Vector conversion between two coordinate 
systems



Traditional View

• The group of rigid-body motion, i.e. SE(3)
– (𝑅𝑅, 𝐭𝐭) : Rotation-translation pair
– (𝑅𝑅1, 𝐭𝐭1) ◦ (𝑅𝑅2, 𝐭𝐭2) = (𝑅𝑅1𝑅𝑅2,𝑅𝑅1𝐭𝐭2 + 𝐭𝐭1)

• “Semi-direct” product

– (𝑅𝑅, 𝐭𝐭)−1 = (𝑅𝑅𝑇𝑇 ,−𝑅𝑅𝑇𝑇𝐭𝐭)
• Group action

– (𝑅𝑅, 𝐭𝐭) � 𝒙𝒙 = 𝑅𝑅𝒙𝒙 + 𝐭𝐭
– [(𝑅𝑅1, 𝐭𝐭1) ◦ (𝑅𝑅2, 𝐭𝐭2)] � 𝒙𝒙 = (𝑅𝑅1, 𝐭𝐭1) � [(𝑅𝑅2, 𝐭𝐭2) � 𝒙𝒙]

R ∈ SO(3), t ∈ R3

“◦” : Group operator
“T” :  Matrix transpose
“-1” : Group inverse

x ∈ R3, (R, t) ∈ SE(3)



Traditional View

• A natural way for motion descriptions, commonly used for a 
century in kinematics community

• Hard to model a motion between two poses as seen in a third 
point of view
– a humanoid robot seeing his hand moving
– a ground-based remote control of aerial vehicles



Concept Definitions

• Euclidean Motion
– Handedness-preserving isometry of Euclidean space
– Can be described using group-theoretic tools
– Well-defined without coordinates or frames of reference

• Pose
– Describes a position and orientation in space

• Change of Pose
– Conversion of a pose into another
– A movement of frame without moving the whole space

• Coordinate Transformation
– Describe changes in the space-fixed frame
– Describe changes in the way frames are attached to moving body



Conjugation and Change of View

• Problem of interest
– 𝐴𝐴

𝑂𝑂𝐻𝐻𝐵𝐵 = 𝐻𝐻(𝐴𝐴𝑂𝑂𝑅𝑅𝐵𝐵, 𝐴𝐴𝑂𝑂𝐝𝐝𝐵𝐵)
– Note: 𝐴𝐴𝑂𝑂𝐝𝐝𝐵𝐵 is not the translation vector 𝐴𝐴𝑂𝑂𝐭𝐭𝐵𝐵, but the 

displacement of frame origin O under Euclidean motion 
𝐴𝐴
𝑂𝑂𝐻𝐻𝐵𝐵

The meaning of 𝐴𝐴𝑂𝑂𝐝𝐝𝐵𝐵 Translation vectors of different frame origins



Conjugation and Change of View

• Relationship between 𝐴𝐴𝑂𝑂𝐻𝐻𝐵𝐵, 𝐴𝐴𝐴𝐴𝐻𝐻𝐵𝐵, 𝑂𝑂𝑂𝑂𝐻𝐻𝐴𝐴
– Let 𝒙𝒙 be a point in space, which can be described in any

reference frame

– Coordinate transformation of a point: 𝑂𝑂𝑋𝑋 = 𝑂𝑂ℋ𝐴𝐴
𝐴𝐴𝑋𝑋

– Euclidean motion of the point: 𝑂𝑂𝑋𝑋′ = 𝐴𝐴
𝑂𝑂𝐻𝐻𝐵𝐵 𝑂𝑂𝑋𝑋

Relationship between frames O, A, B and C

𝐴𝐴𝑋𝑋′ = 𝐴𝐴
𝐴𝐴𝐻𝐻𝐵𝐵 𝐴𝐴𝑋𝑋

𝐴𝐴𝑋𝑋′ = 𝐴𝐴ℋ𝐵𝐵
𝐵𝐵𝑋𝑋′

𝐵𝐵𝑋𝑋′ = 𝐴𝐴𝑋𝑋
⇒ 𝐴𝐴ℋ𝐵𝐵 = 𝐴𝐴

𝐴𝐴𝐻𝐻𝐵𝐵



𝐴𝐴
𝑂𝑂𝐭𝐭𝐵𝐵 = 𝑂𝑂

𝑂𝑂𝑅𝑅𝐴𝐴 𝐴𝐴
𝐴𝐴𝐭𝐭𝐵𝐵

Conjugation and Change of View

• Conjugation:
– Rotation part: 𝐴𝐴𝑂𝑂𝑅𝑅𝐵𝐵 = 𝑂𝑂

𝑂𝑂𝑅𝑅𝐴𝐴 𝐴𝐴
𝐴𝐴𝑅𝑅𝐵𝐵 𝑂𝑂

𝑂𝑂𝑅𝑅𝐴𝐴−1

– Translation part: 𝐴𝐴𝑂𝑂𝐝𝐝𝐵𝐵 = (𝐼𝐼 − 𝐴𝐴
𝑂𝑂𝑅𝑅𝐵𝐵) 𝑂𝑂

𝑂𝑂𝐭𝐭𝐴𝐴 + 𝐴𝐴
𝑂𝑂𝐭𝐭𝐵𝐵

• Transformation of concatenated displacement
– 𝐴𝐴

𝑂𝑂𝐻𝐻𝐶𝐶 = 𝐵𝐵
𝑂𝑂𝐻𝐻𝐶𝐶 𝐴𝐴

𝑂𝑂𝐻𝐻𝐵𝐵
• In contrast with rigid-body kinematics: 𝐴𝐴𝐴𝐴𝐻𝐻𝐶𝐶 = 𝐴𝐴

𝐴𝐴𝐻𝐻𝐵𝐵 𝐵𝐵
𝐵𝐵𝐻𝐻𝐶𝐶

𝐴𝐴
𝑂𝑂𝐻𝐻𝐵𝐵 = 𝑂𝑂ℋ𝐴𝐴 𝐴𝐴

𝐴𝐴𝐻𝐻𝐵𝐵 𝑂𝑂ℋ𝐴𝐴
−1 = 𝑂𝑂

𝑂𝑂𝐻𝐻𝐴𝐴 𝐴𝐴
𝐴𝐴𝐻𝐻𝐵𝐵 𝑂𝑂

𝑂𝑂𝐻𝐻𝐴𝐴−1

Relationship between frames O, A, B and C



Screw Parameters
• Expression of any Euclidean motion:

– 𝐻𝐻 𝐧𝐧,𝐩𝐩,𝜃𝜃,𝑑𝑑 = 𝑒𝑒𝜃𝜃𝜃𝜃 𝐼𝐼 − 𝑒𝑒𝜃𝜃𝜃𝜃 𝐩𝐩 + 𝑑𝑑𝐧𝐧
𝟎𝟎𝑇𝑇 1

 𝐧𝐧: Direction of screw axis
 𝑁𝑁: Skew-symmetric matrix corresponding to 𝐧𝐧, 𝑁𝑁 = �𝐧𝐧

 Can be obtained by: 𝑅𝑅 − 𝑅𝑅𝑇𝑇 = 2 sin𝜃𝜃 𝑁𝑁

 𝐩𝐩: Unique vector pointing to the axis, s.t. 𝐩𝐩 � 𝐧𝐧 = 0
 𝜃𝜃: Angle of rotation

 𝜃𝜃 = arccos(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑅𝑅 −1
2

)

 𝑑𝑑: Distance along the axis
 𝑑𝑑 = 𝐝𝐝 � 𝐧𝐧
 𝐴𝐴𝑑𝑑𝐵𝐵 = 𝐴𝐴

𝑂𝑂𝐝𝐝𝐵𝐵 � 𝐴𝐴𝑂𝑂𝐧𝐧𝐵𝐵 = 𝐴𝐴
𝑂𝑂𝐭𝐭𝐵𝐵 � 𝐴𝐴𝑂𝑂𝐧𝐧𝐵𝐵

 Can be obtained by 𝐴𝐴𝑂𝑂𝐻𝐻𝐵𝐵 = 𝐻𝐻(𝐴𝐴𝑂𝑂𝑅𝑅𝐵𝐵 , 𝐴𝐴𝑂𝑂𝐝𝐝𝐵𝐵 ) or (𝐴𝐴𝑂𝑂𝑅𝑅𝐵𝐵 , 𝐴𝐴𝑂𝑂𝐭𝐭𝐵𝐵 )

( 𝐴𝐴𝜃𝜃𝐵𝐵 , 𝐴𝐴𝑑𝑑𝐵𝐵 ) are invariant to the choice of O



Pose Change Group

• Definition of “direct-product” group: PCG 3 = SO 3 × ℝ3

– (𝐴𝐴𝑂𝑂𝑅𝑅𝐶𝐶 , 𝐴𝐴𝑂𝑂𝐭𝐭𝐶𝐶) = (𝐵𝐵𝑂𝑂𝑅𝑅𝐶𝐶 , 𝐵𝐵𝑂𝑂𝐭𝐭𝐶𝐶) � (𝐴𝐴𝑂𝑂𝑅𝑅𝐵𝐵 , 𝐴𝐴𝑂𝑂𝐭𝐭𝐵𝐵) = (𝐵𝐵𝑂𝑂𝑅𝑅𝐶𝐶 𝐴𝐴𝑂𝑂𝑅𝑅𝐵𝐵 , 𝐵𝐵𝑂𝑂𝐭𝐭𝐶𝐶 + 𝐴𝐴
𝑂𝑂𝐭𝐭𝐵𝐵)

• 𝐴𝐴
𝑂𝑂𝑅𝑅𝐵𝐵 = exp 𝐴𝐴𝜃𝜃𝐵𝐵 𝐴𝐴

𝑂𝑂�𝐧𝐧𝐵𝐵 = 𝑂𝑂
𝑂𝑂𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐵𝐵𝑂𝑂𝑂𝑂𝑅𝑅𝐴𝐴𝑇𝑇

• 𝐴𝐴
𝑂𝑂𝐭𝐭𝐵𝐵 is the displacement from A to B as seen in O

• Let 𝒙𝒙 denote a point in space
– 𝐴𝐴

𝑂𝑂𝐭𝐭𝑋𝑋: position of 𝒙𝒙 from the origin of A as seen in O

• Group action on pose space: 𝑄𝑄, 𝜉𝜉 ⨀ 𝑅𝑅, 𝐭𝐭 ≐ 𝑄𝑄𝑅𝑅𝑄𝑄𝑇𝑇 ,𝑄𝑄𝐭𝐭



Pose Change Group
• Change of observer frame

– If the motion is viewed from frame 1 rather than frame O:
• Transformation: 𝐴𝐴1𝐻𝐻𝐵𝐵 = 𝑂𝑂

𝑂𝑂𝐻𝐻1−1𝐴𝐴𝑂𝑂𝐻𝐻𝐵𝐵𝑂𝑂𝑂𝑂𝐻𝐻1 = 1
1𝐻𝐻𝑂𝑂 𝐴𝐴

𝑂𝑂𝐻𝐻𝐵𝐵11𝐻𝐻𝑂𝑂−1
• Rotational and translational parts can be obtained by group action

– 𝐴𝐴
1𝑅𝑅𝐵𝐵 , 𝐴𝐴1𝐭𝐭𝐵𝐵 = 1

1𝑅𝑅𝑂𝑂 ,𝟎𝟎 ⨀ 𝐴𝐴
𝑂𝑂𝑅𝑅𝐵𝐵 , 𝐴𝐴𝑂𝑂𝐭𝐭𝐵𝐵

– 𝐴𝐴
1𝑅𝑅𝐵𝐵 = 1

1𝑅𝑅𝑂𝑂 𝐴𝐴
𝑂𝑂𝑅𝑅𝐵𝐵 1

1𝑅𝑅𝑂𝑂𝑇𝑇

– 𝐴𝐴
1𝐭𝐭𝐵𝐵 = 1

1𝑅𝑅𝑂𝑂 𝐴𝐴
𝑂𝑂𝐭𝐭𝐵𝐵

Transformation of the observer frame 
from O to 1

Coordinates of all vectors calculated in frame 1



Pose Change Group

• Change of body-fixed frame
– ( �̅�𝐴

𝑂𝑂𝑅𝑅 �𝐵𝐵, �̅�𝐴
𝑂𝑂𝐭𝐭 �𝐵𝐵) = (𝑅𝑅0, 𝐵𝐵𝑂𝑂𝐭𝐭 �𝐵𝐵) � (𝐴𝐴𝑂𝑂𝑅𝑅𝐵𝐵 , 𝐴𝐴𝑂𝑂𝐭𝐭𝐵𝐵) � (𝑅𝑅0, 𝐴𝐴𝑂𝑂𝐭𝐭𝑨𝑨) −1

• 𝑅𝑅0 is defined by 𝑂𝑂𝑂𝑂𝐻𝐻�̅�𝐴∆−1= 𝐻𝐻(𝑅𝑅0,𝐝𝐝0)
• ∆≐ 𝐴𝐴

𝐴𝐴𝐻𝐻�̅�𝐴 = 𝐵𝐵
𝐵𝐵𝐻𝐻�𝐵𝐵

Conjugation resulting from changing the body-fixed frame Translational part of the pose changes



Applications

• Bi-invariant Metrics
– Definition: 𝑑𝑑 𝑔𝑔1,𝑔𝑔2 = 𝑑𝑑 ℎ ∘ 𝑔𝑔1, ℎ ∘ 𝑔𝑔2 = 𝑑𝑑(𝑔𝑔1 ∘ 𝑘𝑘,𝑔𝑔2 ∘ 𝑘𝑘)
– SE(3) does not have nontrivial bi-invariant metric functions

• 𝑑𝑑𝑆𝑆𝑆𝑆 3 𝐻𝐻0𝐻𝐻1𝐻𝐻0−1,𝐻𝐻0𝐻𝐻2𝐻𝐻0−1 ≠ 𝑑𝑑𝑆𝑆𝑆𝑆 3 𝐻𝐻1,𝐻𝐻2 ≠ 𝑑𝑑𝑆𝑆𝑆𝑆 3 𝐻𝐻1𝐻𝐻0,𝐻𝐻2𝐻𝐻0
– PCG(3) tolerates bi-invariance under direct-product

• 𝑑𝑑𝑃𝑃𝐶𝐶𝑃𝑃 3 𝑅𝑅0, 𝐭𝐭0 � 𝑅𝑅1, 𝐭𝐭1 , 𝑅𝑅0, 𝐭𝐭0 � 𝑅𝑅2, 𝐭𝐭2 = 𝑑𝑑𝑃𝑃𝐶𝐶𝑃𝑃 3 𝑅𝑅1, 𝐭𝐭1 , 𝑅𝑅2, 𝐭𝐭2 =
𝑑𝑑𝑃𝑃𝐶𝐶𝑃𝑃 3 𝑅𝑅1, 𝐭𝐭1 � 𝑅𝑅0, 𝐭𝐭0 , 𝑅𝑅2, 𝐭𝐭2 � 𝑅𝑅0, 𝐭𝐭0

– Plays a role in interpolating paths between two poses or motions



Applications

• Path Generations
– SE(3): 𝐻𝐻 𝜏𝜏 = exp(𝜏𝜏log(𝐴𝐴𝑂𝑂𝐻𝐻𝐵𝐵))𝑂𝑂𝑂𝑂𝐻𝐻𝐴𝐴

– PCG(3): (𝑅𝑅 𝜏𝜏 , 𝐭𝐭(𝜏𝜏)) = (exp 𝜏𝜏log 𝐴𝐴
𝑂𝑂𝑅𝑅𝐵𝐵 , 𝐴𝐴𝑂𝑂𝐭𝐭𝐵𝐵𝜏𝜏) � (𝑂𝑂𝑂𝑂𝑅𝑅𝐴𝐴, 𝑂𝑂𝑂𝑂𝐭𝐭𝐴𝐴)

2D Case 3D Case

Trajectory starts at 𝑂𝑂𝑂𝑂𝐻𝐻𝐴𝐴 at 𝜏𝜏 = 0, and ends at 𝑂𝑂𝑂𝑂𝐻𝐻𝐵𝐵 at 𝜏𝜏 = 1



Conclusions

• Differences between Pose Changes and Euclidean 
Motions are reviewed

• An analytical framework for composition of pose 
changes as a direct product operation is developed

• Applications in bi-invariant metric and path 
generation are introduced
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